People often use the internet and microblogging websites to express their thoughts and opinions on products and services. Sentiment analysis of public opinion is much more important because it aids in understanding the public's views on a specific service and the actions of the consumer who is purchasing a product. This area is expected to be extremely useful in analyzing brand awareness in both the private and public sectors. The proposed survey would aid in the comprehension of the different algorithms that are used to categorize the texts posted into various sentimental categories. The study emphasized that the hybrid algorithms outperformed supervised machine learning approaches with better classification accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sentiment Analysis Classifiers for Polarity Detection in Social Media Text: A Comparative Study


    Beteiligte:
    Santhiya, P. (Autor:in) / Kogilavani, S.V. (Autor:in) / Malliga, S. (Autor:in)


    Erscheinungsdatum :

    02.12.2021


    Format / Umfang :

    284468 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Machine Learning Approaches for Sentiment Analysis in Social Media Data

    Thenappan, S. / Krishnan, Anju R / Murugan, P. Sundara Bala et al. | IEEE | 2023



    Estimate Sentiment of Crowds from Social Media during City Events

    Gong, Vincent X. / Daamen, Winnie / Bozzon, Alessandro et al. | Transportation Research Record | 2019


    Sensitive Information Recognition Based on Short Text Sentiment Analysis

    Li, Yang / Pan, Quan / Yang, Tao | British Library Online Contents | 2016


    Steds: Social Media Based Transportation Event Detection with Text Summarization

    Fu, Kaiqun / Lu, Chang-Tien / Nune, Rakesh et al. | IEEE | 2015