Short-term traffic flow prediction is of great significance for urban traffic management and planning. To efficiently utilize traffic flow data for prediction, it is crucial to establish a reasonable short-term traffic flow prediction model. In this study, the ARIMA method is adopted for traffic flow trend prediction. Firstly, time series data obtained from electronic police are processed to determine the stationarity of the sequence. Then, the maximum likelihood estimation method is used to estimate the model parameters, and the residuals are subjected to a white noise test. Static prediction method is used for real-time dynamic traffic flow prediction, and finally the model prediction results are evaluated. The experimental results show that the ARIMA model (4,1,5) has higher accuracy and reliability in predicting short-term traffic flow, thus it has important application value in actual traffic control and planning


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on ARIMA Model for Short-Term Traffic Flow Prediction based on Time Series


    Beteiligte:
    Wang, Hao (Autor:in) / Zhang, Bobo (Autor:in)


    Erscheinungsdatum :

    23.11.2023


    Format / Umfang :

    2604236 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Short-time traffic flow prediction with ARIMA-GARCH model

    Chenyi Chen, / Jianming Hu, / Qiang Meng, et al. | IEEE | 2011


    Short-Time Traffic Flow Prediction with ARIMA-GARCH Model

    Chen, C. / Hu, J. / Meng, Q. et al. | British Library Conference Proceedings | 2011


    Short-term traffic flow prediction using seasonal ARIMA model with limited input data

    Kumar, S. Vasantha / Vanajakshi, Lelitha | Springer Verlag | 2015

    Freier Zugriff

    Short-Term Traffic Flow Forecast Based on ARIMA-SVM Combined Model

    Peng, Jiaxin / Xu, Yongneng / Wu, Menghui | TIBKAT | 2023


    Short-Term Traffic Flow Forecast Based on ARIMA-SVM Combined Model

    Peng, Jiaxin / Xu, Yongneng / Wu, Menghui | Springer Verlag | 2022