Short-time traffic flow prediction is a significant interest in transportation study, and it is essential in congestion control and traffic network management. In this paper, we propose an Autoregressive Integrated Moving Average with Generalized Autoregressive Conditional Heteroscedasticity (ARIMA-GARCH) model for traffic flow prediction. The model combines linear ARIMA model with nonlinear GARCH model, so it can capture both the conditional mean and conditional heteroscedasticity of traffic flow series. The model is calibrated, validated and used for prediction based on PeMS single loop detector data. The performance of the hybrid model is compared with that of standard ARIMA model. The results show that the introduction of conditional heteroscedasticity cannot bring satisfactory improvement to prediction accuracy, in some cases the general GARCH(1,1) model may even deteriorate the performance. Thus for ordinary traffic flow prediction, the standard ARIMA model is sufficient.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Short-time traffic flow prediction with ARIMA-GARCH model


    Beteiligte:
    Chenyi Chen, (Autor:in) / Jianming Hu, (Autor:in) / Qiang Meng, (Autor:in) / Yi Zhang, (Autor:in)


    Erscheinungsdatum :

    01.06.2011


    Format / Umfang :

    298388 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Short-Time Traffic Flow Prediction with ARIMA-GARCH Model

    Chen, C. / Hu, J. / Meng, Q. et al. | British Library Conference Proceedings | 2011



    A novel hybrid model of ARIMA‐MCC and CKDE‐GARCH for urban short‐term traffic flow prediction

    Leina Zhao / Xinyu Wen / Yanpeng Wang et al. | DOAJ | 2022

    Freier Zugriff

    A novel hybrid model of ARIMA‐MCC and CKDE‐GARCH for urban short‐term traffic flow prediction

    Zhao, Leina / Wen, Xinyu / Wang, Yanpeng et al. | Wiley | 2022

    Freier Zugriff