Reinforcement Learning (RL) has become a potential method for autonomous driving to adapt to complex driving environments with high flexibility. However, the popular RL paradigm directly outputting the vehicle control commands makes the future motion with fluctuation. To improve the driving behavior stability of RL method while ensuring the motion flexibility, this paper proposes a stability enhanced hierarchical reinforcement learning method based on parameterized trajectory action (RL-PTA). It offers feasible driving path in the long horizon and real-time control commands in the short horizon simultaneously. The RL agent actively contributes to path generation with discrete-continuous hybrid parameter actions, and the parameterized action space also ensures optimal consistency of the hybrid output. The experiment results show that the proposed method can generate flexible and stable lane-change driving behavior, thereby improving the efficiency and safety for autonomous driving.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Stability Enhanced Hierarchical Reinforcement Learning for Autonomous Driving with Parameterized Trajectory Action


    Beteiligte:
    Jin, Guizhe (Autor:in) / Li, Zhuoren (Autor:in) / Leng, Bo (Autor:in) / Han, Wei (Autor:in) / Xiong, Lu (Autor:in) / Hu, Jia (Autor:in) / Li, Nan (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    2366059 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Efficient Reinforcement Learning for Autonomous Driving with Parameterized Skills and Priors

    Wang, Letian / Liu, Jie / Shao, Hao et al. | ArXiv | 2023

    Freier Zugriff

    Trajectory Planning for Autonomous Vehicles Using Hierarchical Reinforcement Learning

    Naveed, Kaleb Ben / Qiao, Zhiqian / Dolan, John M. | IEEE | 2021


    Deep Hierarchical Reinforcement Learning for Autonomous Driving with Distinct Behaviors

    Chen, Jianyu / Wang, Zining / Tomizuka, Masayoshi | IEEE | 2018


    DEEP HIERARCHICAL REINFORCEMENT LEARNING FOR AUTONOMOUS DRIVING WITH DISTINCT BEHAVIORS

    Chen, Jianyu / Wang, Zining / Tomizuka, Masayoshi | British Library Conference Proceedings | 2018