The ability to sense and understanding the driving environment is a key technology for ADAS and autonomous driving. Human drivers have to pay more visual attention to important or target elements and ignore unnecessary ones present in their field of sight. A model that computes this visual attention of targets in a specific driving environment is essential and useful in supporting autonomous driving, object-specific tracking & detection, driving training, car collision warning, traffic sign detection, etc. In this paper, we propose a new framework of visual attention that can predict important objects in the driving scene using a conditional generative adversarial network. A large scale Visual Attention Driving Database (VADD) of saliency heat-maps is built from existing driving datasets using a saliency mechanism. The proposed framework model takes its strength from these saliency heat-maps as conditioning label variables. The results show that the proposed approach makes us able to predict heat-maps of most important objects in a driving environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Saliency Heat-Map as Visual Attention for Autonomous Driving Using Generative Adversarial Network (GAN)


    Beteiligte:
    Lateef, Fahad (Autor:in) / Kas, Mohamed (Autor:in) / Ruichek, Yassine (Autor:in)


    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    25085654 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    GENERATIVE ADVERSARIAL NETWORK ENRICHED DRIVING SIMULATION

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Generative adversarial network enriched driving simulation

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Generative adversarial network enriched driving simulation

    ZHANG YUBO / SONG HAO / PENG JUN et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    DSA-GAN: Driving Style Attention Generative Adversarial Network for Vehicle Trajectory Prediction

    Choi, Seungwon / Kweon, Nahyun / Yang, Chanuk et al. | IEEE | 2021


    Generative adversarial network enriched driving simulation

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2023

    Freier Zugriff