A correct prediction of traffic speed can reasonably plan resources in traffic area, avoid congestion and reduce probability of accidents. In this paper, we propose a Speed-Masked Transformer (SMT) model with an improved decoder, which uses Speed-Masked module to mask the traffic speed data. Decoder structure is simplified and speed of historical moments is weighted by an exponential attenuation function. To verify the advantages of SMT model, datasets collected from interstate freeway in California are used to train and validate the prediction model. The SMT model is compared with several other traffic speed prediction models through simulation. Results show that the SMT model performs best in terms of speed prediction for long prediction horizon.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Speed-Masked Transformer Model for Traffic Speed Prediction


    Beteiligte:
    Feng, Jiaheng (Autor:in) / Ma, Qiang (Autor:in)


    Erscheinungsdatum :

    12.05.2023


    Format / Umfang :

    481365 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic speed prediction device and traffic speed prediction method

    KIM NAM-HYUK | Europäisches Patentamt | 2025

    Freier Zugriff

    Traffic speed prediction using GARCH‐GRU hybrid model

    Muhammad Ali / Kamaludin Mohamad Yusof / Benjamin Wilson et al. | DOAJ | 2023

    Freier Zugriff

    Traffic speed prediction using GARCH‐GRU hybrid model

    Ali, Muhammad / Yusof, Kamaludin Mohamad / Wilson, Benjamin et al. | Wiley | 2023

    Freier Zugriff

    A CNN-LSTM Model for Traffic Speed Prediction

    Cao, Miaomiao / Li, Victor O. K. / Chan, Vincent W. S. | IEEE | 2020


    V2X Database Driven Traffic Speed Prediction

    Adelberger, Daniel / Deng, Junpeng / Del Re, Luigi | IEEE | 2021