Traffic speed prediction is an integral part of an intelligent transportation system (ITS) because an advanced knowledge of traffic speed can help taking proactive preventive steps to avoid impending problems and it can also help in trip planning. Traffic speed data comprises a time series that may be modelled using any statistical or machine learning technique. In most of the cases, however, the performance of such models is bottlenecked due to heteroskedasticity usually present in such datasets. ARCH/GARCH family of models are generally used to model variance in such data. This paper presents a novel technique, termed as GARCH‐GRU, based on additive decomposition that splits data into random (residual) and deterministic parts. Random part is normalized using rolling standard deviation. GARCH (1, 1) is used to predict conditional variance of the residual and the predicted variance is then used in the basic model equation along with normalized residual that mimic white noise as required by the model. The data other than residual is modelled using a GRU model. The approach is applied to two datasets corresponding to a downtown road and a motorway. For comparison, the same datasets are exposed to three classical techniques; seasonal ARIMA, CNN and GRU techniques. The results demonstrate that the GARCH‐GRU technique outperforms others for random data of downtown road but fails to handle dynamic variations present in the motorway data.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Traffic speed prediction using GARCH‐GRU hybrid model


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.11.2023


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic speed prediction using GARCH‐GRU hybrid model

    Muhammad Ali / Kamaludin Mohamad Yusof / Benjamin Wilson et al. | DOAJ | 2023

    Freier Zugriff

    Short-Time Traffic Flow Prediction with ARIMA-GARCH Model

    Chen, C. / Hu, J. / Meng, Q. et al. | British Library Conference Proceedings | 2011


    Short-time traffic flow prediction with ARIMA-GARCH model

    Chenyi Chen, / Jianming Hu, / Qiang Meng, et al. | IEEE | 2011


    Road speed interval prediction method based on GARCH model

    LU GUANG / LI WENYONG / LI JUNZHUO et al. | Europäisches Patentamt | 2025

    Freier Zugriff