Neural network pruning has become a de facto component for deploying deep networks on resource-constrained devices, which can reduce memory requirements and computation costs. In particular, channel pruning gained more popularity due to its structured nature and direct savings on general hardware. However, most existing pruning approaches utilize importance measures that are not directly related to the task utility. Moreover, few in the literature focus on visual detection models. To fill these gaps, we propose a novel gradient-based saliency measure for visual detection and use it to guide our channel pruning. Experiments on the KITTI and COCO_traffic datasets demonstrate our pruning method’s efficacy and superiority over competing state-of-the-art approaches. It can even achieve better performance with fewer parameters than the original model. Our pruning approach also demonstrates its great potential in handling small-scale objects.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Visual-Saliency-Guided Channel Pruning for Deep Visual Detectors in Autonomous Driving


    Beteiligte:
    Choi, Jung Im (Autor:in) / Tian, Qing (Autor:in)


    Erscheinungsdatum :

    04.06.2023


    Format / Umfang :

    6268682 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    SaliencyVR: Saliency Matching Based Visual Relocalization for Autonomous Vehicle

    Wang, Ke / Zhao, Guoliang / Wang, Yong et al. | IEEE | 2025


    AUTONOMOUS VEHICLE OPERATIONAL MANAGEMENT WITH VISUAL SALIENCY PERCEPTION CONTROL

    NODA KUNIAKI / WRAY KYLE HOLLINS / WITWICKI STEFAN | Europäisches Patentamt | 2023

    Freier Zugriff


    Autonomous vehicle operational management with visual saliency perception control

    NODA KUNIAKI / WRAY KYLE HOLLINS / WITWICKI STEFAN | Europäisches Patentamt | 2021

    Freier Zugriff

    Visual Routines for Autonomous Driving

    Salgian, G. / Ballard, D. H. / IEEE; Computer Society | British Library Conference Proceedings | 1998