We present a LiDAR-based SLAM aided by GPS/INS integrated navigation system which improves the robustness of real-time mapping and localization for autonomous vehicles. We add the pose of GPS/INS as a penalty term in the scan-to-map registration to obtain high precision localization and clear map simultaneously. When the scan-to-map registration failed, we use the pose of GPS/INS to create a new submap and apply the map-to-map registration to register between the submaps, which improves robustness. Because the map-to-map registration cannot run in real-time, we generate the global map and local map at different frequency levels, which match the requirements of global and local path planning respectively. The experimental results show that our method has more robust performance and better map quality than the existing methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Robust LiDAR-based SLAM for Autonomous Vehicles aided by GPS/INS Integrated Navigation System


    Beteiligte:
    Su, Tao (Autor:in) / Zhu, Hui (Autor:in) / Zhao, Pan (Autor:in) / Li, Zhiyuan (Autor:in) / Zhang, Song (Autor:in) / Liang, Huawei (Autor:in)


    Erscheinungsdatum :

    01.07.2021


    Format / Umfang :

    5211679 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Lidar-based SLAM and autonomous navigation for forestry quadrotors

    Hu, Xuejun / Wang, Meishan / Qian, Chenghao et al. | IEEE | 2018


    Navigation Doppler Lidar Integrated Testing Aboard Autonomous Rocket Powered Vehicles

    Pierrottet, Diego F. / Hines, Glenn / Barnes, Bruce et al. | AIAA | 2018


    DL-SLAM: DIRECT 2.5D LIDAR SLAM FOR AUTONOMOUS DRIVING

    Li, Jun / Zhao, Junqiao / Kang, Yuchen et al. | British Library Conference Proceedings | 2019


    DL-SLAM: Direct 2.5D LiDAR SLAM for Autonomous Driving

    Li, Jun / Zhao, Junqiao / Kang, Yuchen et al. | IEEE | 2019