We generalize Braess's (1968) paradoxical example by defining a Braess paradox to occur when the Wardrop equilibrium distribution of traffic flows is not strongly Pareto optimal. We characterize a Braess paradox in terms of the solution to a mathematical program. Examples illustrate unexpected properties of these solutions. We discuss a computational approach to detecting a Braess paradox.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Characterizing Braess's paradox for traffic networks


    Beteiligte:
    Hagstrom, J.N. (Autor:in) / Abrams, R.A. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    579024 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Characterizing Braess's Paradox for Traffic Networks

    Hagstrom, J. N. / Abrams, R. A. / IEEE | British Library Conference Proceedings | 2001


    Braess's paradox of traffic flow

    Murchland, J.D. | Elsevier | 1970


    The Braess's Paradox in Dynamic Traffic

    Zhuang, Dingyi / Huang, Yuzhu / Jayawardana, Vindula et al. | IEEE | 2022


    Queue Spillback in Braess's Paradox Considering Dynamic Traffic Assignment

    Wei, He ;Dai, Ji Feng | Trans Tech Publications | 2013


    Braess’s Paradox in Day-to-Day Model

    Li, Qi | Trans Tech Publications | 2014