Next-gen wireless networks could greatly enhance capabilities by integrating Unmanned Aerial Vehicles (UAVs) for real-time data gathering, especially in defense. Current UAV methods focus on energy efficiency but neglect data freshness, crucial in military operations in challenging terrains. Our proposal introduces a pioneering approach prioritizing Age of Information (AoI) and energy efficiency in UAV-enabled IoT networks for such operations. Through strategic optimization of UAV locations using clustering and Deep Reinforcement Learning, we minimize average AoI and energy consumption. Our Proximal Policy Optimization UAV Trajectory Planning (PPO-UTP) algorithm, employing Deep Neural Networks (DNNs), ensures optimal decision-making based on collected data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    AoI-Aware Deep Reinforcement Learning Based UAV Path Planning for Defence Applications


    Beteiligte:
    Kumari, Shilpi (Autor:in) / Sodhi, Eshaan (Autor:in) / Gupta, Dev (Autor:in) / Pratap, Ajay (Autor:in)


    Erscheinungsdatum :

    22.07.2024


    Format / Umfang :

    1865645 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Reinforcement Learning-Based UAV Path Planning Algorithm

    Wang, Kunfu / Hui, Ma / Hou, Jiajun et al. | IEEE | 2024


    Multi-Obstacle Path Planning using Deep Reinforcement Learning

    Morgan, Brandon / Trigg, Lena / Stringer, Alexander et al. | IEEE | 2024


    Unmanned Aerial Vehicles Path Planning Based on Deep Reinforcement Learning

    Wang, Guoqiu / Zheng, Xuanyu / Zhao, Haitong et al. | Springer Verlag | 2019


    Research on path planning algorithm based on deep reinforcement learning

    Wang, Zhihao / Yan, Weiqiang / Yang, Mingjun | IEEE | 2024


    Deep Reinforcement Learning-Based Local Path Planning with Memory-Guided

    Wang, Xu / Xu, Xiaobin / Lin, Shiyao et al. | Springer Verlag | 2025