This paper primarily focuses on vehicular computation offloading and scheduling based on prioritized incentives. The objective of this work is to maximize task completion within designated deadlines while concurrently minimizing energy consumption and latency. To achieve this, a prioritized Deep Q Network (DQNP) has been proposed to optimize long-term rewards by dynamically selecting a priority class, server, and CPU frequency at each computational step. Simulation results demonstrate that, compared with baseline algorithms, the proposed DQNP can effectively choose tasks, ensuring minimal energy consumption, reduced latency, and improved completion rates, especially for tasks in the highest priority class. Additionally, the findings shed light on how the model alleviates the resource starvation challenge faced by low-priority tasks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prioritized Task Offloading in Vehicular Edge Computing Using Deep Reinforcement Learning


    Beteiligte:
    Uddin, Ashab (Autor:in) / Sakr, Ahmed Hamdi (Autor:in) / Zhang, Ning (Autor:in)


    Erscheinungsdatum :

    24.06.2024


    Format / Umfang :

    1415864 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Reinforcement Learning Based Task Offloading Scheme for Vehicular Edge Computing Network

    Zhang, Jie / Guo, Hongzhi / Liu, Jiajia | Springer Verlag | 2019



    Deep Reinforcement Learning for Delay-Optimized Task Offloading in Vehicular Fog Computing

    Toopchinezhad, Mohammad Parsa / Ahmadi, Mahmood | IEEE | 2025


    Deep Reinforcement Learning Based Task Offloading for UAV-Assisted Edge Computing

    Zhu, Rangang / Huang, Mingxuan / Sun, Kaixuan et al. | IEEE | 2023


    A Collaborative Task Offloading Scheme in Vehicular Edge Computing

    Bute, Muhammad Saleh / Fan, Pingzhi / Liu, Gang et al. | IEEE | 2021