Abstract Recently, the trends of automation and intelligence in vehicular networks have led to the emergence of intelligent connected vehicles (ICVs), and various intelligent applications like autonomous driving have also rapidly developed. Usually, these applications are compute-intensive, and require large amounts of computation resources, which conflicts with resource-limited vehicles. This contradiction becomes a bottleneck in the development of vehicular networks. To address this challenge, the researchers combined mobile edge computing (MEC) with vehicular networks, and proposed vehicular edge computing networks (VECNs). The deploying of MEC servers near the vehicles allows compute-intensive applications to be offloaded to MEC servers for execution, so as to alleviate vehicles’ computational pressure. However, the high dynamic feature which makes traditional optimization algorithms like convex/non-convex optimization less suitable for vehicular networks, often lacks adequate consideration in the existing task offloading schemes. Toward this end, we propose a reinforcement learning based task offloading scheme, i.e., a deep Q learning algorithm, to solve the delay minimization problem in VECNs. Extensive numerical results corroborate the superior performance of our proposed scheme on reducing the processing delay of vehicles’ computation tasks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Reinforcement Learning Based Task Offloading Scheme for Vehicular Edge Computing Network


    Beteiligte:
    Zhang, Jie (Autor:in) / Guo, Hongzhi (Autor:in) / Liu, Jiajia (Autor:in)


    Erscheinungsdatum :

    01.01.2019


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Prioritized Task Offloading in Vehicular Edge Computing Using Deep Reinforcement Learning

    Uddin, Ashab / Sakr, Ahmed Hamdi / Zhang, Ning | IEEE | 2024


    A Collaborative Task Offloading Scheme in Vehicular Edge Computing

    Bute, Muhammad Saleh / Fan, Pingzhi / Liu, Gang et al. | IEEE | 2021




    A Reliable Learning Based Task Offloading Framework for Vehicular Edge Computing

    Shabir, Balawal / Malik, Asad W. / Rahman, Anis U. et al. | IEEE | 2022