This paper presents an infrastructure for defining scenarios and utilizing them to validate automated driving systems. It addresses various aspects of scenario-based testing, with a focus on lane keeping, lane changing, and traffic light scenarios. We define the scenarios using the OpenSCENARIO 2.0 format, as well as directly through Python scripts. These scenarios are integrated into two distinct simulators: an in-house simulator based on the Intelligent Driver Model (IDM), and the CARLA simulator. In these simulators, two agents are subjected to a range of challenging conditions, and the risk of failure is assessed. This evaluation provides insights into the agents' performance and their safety compliance, acting as a benchmark for safety assessment in the different scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Safety and Reliability: Validation for Automated Driving Functions through Scenario-Based Testing


    Beteiligte:
    Baslan, Naya (Autor:in) / Kerschl, Alexander (Autor:in) / Schmidt, Julian (Autor:in) / Pfluger, Dirk (Autor:in)


    Erscheinungsdatum :

    22.06.2025


    Format / Umfang :

    2147428 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Scenario Identification for Validation of Automated Driving Functions

    Elrofai, Hala / Worm, Daniël / Op den Camp, Olaf | Springer Verlag | 2016


    Highly immersive driving simulator for scenario based testing of automated driving functions

    Prokop, G. / Tüschen, T. / Eisenköck, N. et al. | British Library Conference Proceedings | 2022


    Highly immersive driving simulator for scenario based testing of automated driving functions

    Prokop, Günther / Tüschen, Thomas / Eisenköck, Norman et al. | Springer Verlag | 2022



    Fundamental Considerations around Scenario-Based Testing for Automated Driving

    Neurohr, Christian / Westhofen, Lukas / Henning, Tabea et al. | IEEE | 2020