One of the most interesting aspects of the world is that it can be considered made up of patterns. In the most pattern recognition problem pattern have a dynamic nature and non-adaptive algorithms (instruction sets) will fail to give a realistic solution to model them. In these cases, adaptive algorithms are used and among them, neural networks have the greatest hit. For example, the defense applications very frequently need to record, detect, identify and classify images of objects or signals coming from various directions and from various sources - static or dynamic. There are many applications in remote sensing where study of dynamic data is needed such as deforestation, effects of natural and man made disasters, migration in the paths of rivers due to the dynamic nature of Earth's plates. Artificial Neural Networks (ANN) can play a role in modeling such applications because of their capability to model nonlinear processes and to identify unknown patterns and images based on their learning model, or to forecast certain outcomes by extrapolation. In this study we present results on classifying the images using SOFM classification and detect temporal changes in patterns.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detecting temporal changes in satellite imagery using ANN


    Beteiligte:
    Mathur, P. (Autor:in) / Govil, R. (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    544862 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Real-Time Satellite Imagery Changes Icebreaker Operations

    Parsons, R. | British Library Online Contents | 1997




    Drought Analysis Method Using Satellite Imagery

    LEE JUN WOO / LEE DAL GEUN / CHEON EUN JI et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Satellite imagery in use

    Einar Bjorgo / Francesco Pisano / Joshua Lyons et al. | DOAJ | 2008

    Freier Zugriff