In this work, we focus on an improvement of a road obstacle recognition system using SVM based classifiers combination. The improvement relies on the use of Dempster-Shafer theory (DST) to combine in a finer way the outputs of SVM classifiers. The SVM classifiers were trained on different local and global features based on Speeded Up Robust Features (SURF) extracted from both visible and far-infrared images. A two-stage recognition method is also proposed to reduce the complexity of the overall system. The experiments are conducted on a set of images where obstacles occur at different scales, shapes and in difficult recognition situations. They show significant improvements while using DST combination compared to the classical combination strategies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evidential combination of SVM road obstacle classifiers in visible and far infrared images


    Beteiligte:
    Besbes, B. (Autor:in) / Ammar, S. (Autor:in) / Kessentini, Y. (Autor:in) / Rogozan, A. (Autor:in) / Bensrhair, A. (Autor:in)


    Erscheinungsdatum :

    01.06.2011


    Format / Umfang :

    239883 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Evidential Combination of SVM Road Obstacle Classifiers in Visible and Far Infrared Images

    Besbes, B. / Ammar, S. / kessentini, y. et al. | British Library Conference Proceedings | 2011



    Obstacle recognition using multiple kernel in visible and infrared images

    Apatean, Anca / Rogozan, Alexandrina / Bensrhair, Abdelaziz | IEEE | 2009


    Obstacle Recognition Using Multiple Kernel in Visible and Infrared Images

    Apatean, A. / Rogozan, A. / Bensrhair, A. | British Library Conference Proceedings | 2009


    FUSION OF FAR INFRARED AND VISIBLE IMAGES IN ENHANCED OBSTACLE DETECTION IN AUTOMOTIVE APPLICATIONS

    STEIN GIDEON / SHASHUA AMNON / GDALYAHU YORAM | Europäisches Patentamt | 2016

    Freier Zugriff