The tire-road friction coefficient is a significant parameter of the motor and safety system control algorithms in electric and hybrid cars. This paper presents a new method able to estimate the instantaneous and maximum values of tire-road friction coefficient. The algorithm applies the discrete-time extended Kalman filter for state estimation. Based on two-wheel longitudinal vehicle dynamics a discrete-time nonlinear state-space model was implemented. A new real-time HIL (Hardware-In-the-Loop) simulation environment was created for verifying the Kalman filter based algorithm and the results were in concordance with the expectations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improvement of active safety systems by the extended Kalman filter based estimation of tire-road friction coefficient


    Beteiligte:
    Enisz, Krisztian (Autor:in) / Fodor, Denes (Autor:in) / Szalay, Istvan (Autor:in) / Kohlrusz, Gabor (Autor:in)


    Erscheinungsdatum :

    01.12.2014


    Format / Umfang :

    491065 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Extended Kalman Filter Based Road Friction Coefficient Estimation and Experimental Verification

    Li, Bin / Sun, Tao / Fang, Arlene et al. | British Library Conference Proceedings | 2019




    Research on Road Friction Coefficient Estimation Algorithm Based on Extended Kalman Filter

    Sun, Zhen-jun / Zhu, Tian-jun / Zheng, Hong-yan | IEEE | 2008


    Tyre-road friction coefficient estimation based on the discrete-time extended Kalman filter

    Enisz,K. / Szalay,I. / Kohlrusz,G. et al. | Kraftfahrwesen | 2015