Advanced Driver Assistance Systems have been shown to greatly improve road safety. However, existing systems are typically reactive with an inability to understand complex traffic scenarios. We present a method to predict driver intention as the vehicle enters an intersection using a Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN). The model is learnt using the position, heading and velocity fused from GPS, IMU and odometry data collected by the ego-vehicle. In this paper we focus on determining the earliest possible moment in which we can classify the driver's intention at an intersection. We consider the outcome of this work an essential component for all levels of road vehicle automation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Long short term memory for driver intent prediction


    Beteiligte:
    Zyner, Alex (Autor:in) / Worrall, Stewart (Autor:in) / Ward, James (Autor:in) / Nebot, Eduardo (Autor:in)


    Erscheinungsdatum :

    01.06.2017


    Format / Umfang :

    1044966 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Long Short Term Memory for Driver Intent Prediction

    Zyner, Alex / Worrall, Stewart / Ward, James Robert et al. | British Library Conference Proceedings | 2017


    Long Short-Term Memory Networks for Driver Drowsiness and Stress Prediction

    Chui, Kwok Tai / Zhao, Mingbo / Gupta, Brij B. | Springer Verlag | 2021


    PREDICTION OF DRIVER INTENT AT INTERSECTION

    ZELMAN IDO / MUDALIGE UPALI P / ELVITIGALA THANURA RANMAL | Europäisches Patentamt | 2017

    Freier Zugriff

    Prediction of driver intent at intersection

    ZELMAN IDO / MUDALIGE UPALI P / ELVITIGALA THANURA RANMAL | Europäisches Patentamt | 2019

    Freier Zugriff

    Online Driver Distraction Detection Using Long Short-Term Memory

    Wollmer, M / Blaschke, C / Schindl, T et al. | IEEE | 2011