Road safety is crucial to prevent traffic deaths and injuries of drivers, passengers, and pedestrians. Various regulations and policies have been proposed to aim at reducing the number of traffic deaths and injuries. However, these figures have remained steady in recent decade. There has been an increasing number of research works on the prediction of driver status which gives warning before undesired status, for instance drowsiness and stress. In this paper, a long short-term memory networks is proposed for generic design of driver drowsiness prediction and driver stress prediction models using electrocardiogram (ECG) signals. The proposed model achieves sensitivity, specificity, and accuracy of 71.0–81.1%, 72.9–81.9%, and 72.2–81.5%, respectively, for driver drowsiness prediction. They are 68.2–79.3%, 71.6–80.2%, and 70.8–79.7%, for driver stress prediction. The results have demonstrated the feasibility of generic model for both drowsiness and stress prediction. Future research directions have been shared to enhance the model performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Long Short-Term Memory Networks for Driver Drowsiness and Stress Prediction


    Weitere Titelangaben:

    Advs in Intelligent Syst., Computing


    Beteiligte:
    Vasant, Pandian (Herausgeber:in) / Zelinka, Ivan (Herausgeber:in) / Weber, Gerhard-Wilhelm (Herausgeber:in) / Chui, Kwok Tai (Autor:in) / Zhao, Mingbo (Autor:in) / Gupta, Brij B. (Autor:in)

    Kongress:

    International Conference on Intelligent Computing & Optimization ; 2020 ; Koh Samui, Thailand December 17, 2020 - December 18, 2020



    Erscheinungsdatum :

    08.02.2021


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Long Short Term Memory for Driver Intent Prediction

    Zyner, Alex / Worrall, Stewart / Ward, James Robert et al. | British Library Conference Proceedings | 2017


    Long short term memory for driver intent prediction

    Zyner, Alex / Worrall, Stewart / Ward, James et al. | IEEE | 2017


    Driver drowsiness detection

    YANG HSIN-HSIANG / PRAKAH-ASANTE KWAKU O | Europäisches Patentamt | 2015

    Freier Zugriff

    Driver Drowsiness Detection

    Satish, K. / Lalitesh, A. / Bhargavi, K. et al. | IEEE | 2020


    Driver Drowsiness Detection

    Rezaei, Mahdi / Klette, Reinhard | Springer Verlag | 2017