The autonomous navigation of micro-monocular UAVs has emerged as a research focus, leveraging their compact size, lightweight design, and energy efficiency. However, the inherent scale ambiguity of monocular systems hinders the direct acquisition of dense, true-scale depth observations, posing collision risks. This paper introduces an innovative monocular UAV navigation system that integrates Visual Inertial Odometry (VIO) with a depth estimation network. The system leverages VIO for precise UAV positioning and employs the sparse, true-scale point cloud from VIO to calibrate the scale of monocular depth estimations, yielding a depth map with consistent scale continuity for downstream planning tasks. Furthermore, the depth estimations are utilized to refine VIO initialization, enhancing the algorithm's initialization speed and robustness. Experimental results demonstrate a 27.7% increase in VIO initialization velocity and a modest improvement in positioning accuracy. Additionally, our approach achieves a significant reduction in obstacle collision rates (34.9% decrease) and an enhanced flight mission completion rate (21.4% increase), outperforming current state-of-the-art end-to-end autonomous UAV navigation algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Navigation Algorithm of Monocular UAV Based on Depth Estimation and Robust VIO


    Beteiligte:
    Zhen, XiangYu (Autor:in) / Deng, ZhongLiang (Autor:in) / Lou, BoYang (Autor:in) / Hou, LiuBo (Autor:in) / Wei, LiCheng (Autor:in)


    Erscheinungsdatum :

    22.11.2024


    Format / Umfang :

    2582053 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Framework for Autonomous UAV Navigation Based on Monocular Depth Estimation

    Jonas Gaigalas / Linas Perkauskas / Henrikas Gricius et al. | DOAJ | 2025

    Freier Zugriff

    Robust horizon finding algorithm for real-time autonomous navigation based on monocular vision

    Neto, A. M. / Victorino, A. C. / Fantoni, I. et al. | IEEE | 2011


    Autonomous Robust Navigation System for MAV Based on Monocular Cameras

    Caldas, Kenny A. Q. / Benevides, Joao R. S. / Inoue, Roberto S. et al. | IEEE | 2022


    Monocular SLAM Position Scale Estimation for Quadrotor Autonomous Navigation

    Nieto-Hernandez, L. / Gomez-Casasola, Angel A. / Rodriguez-Cortes, H. | IEEE | 2019


    MoNA Bench: A Benchmark for Monocular Depth Estimation in Navigation of Autonomous Unmanned Aircraft System

    Yongzhou Pan / Binhong Liu / Zhen Liu et al. | DOAJ | 2024

    Freier Zugriff