With the rapid development of unmanned vehicle technology, its applications in military, civilian, and commercial sectors are becoming increasingly widespread. Alongside the evolution of autonomous systems for unmanned vehicles, ensuring precise autonomous navigation has become an important and complex challenge. This project aims to develop a low-cost autonomous navigation system for unmanned vehicles in unknown environments. The system will utilize a monocular camera and computing unit, combined with advanced monocular depth estimation technology, the A* navigation algorithm, and Model Predictive Control (MPC) algorithm. By capturing environmental images with the monocular camera and generating real-time 3D maps of the surrounding environment using depth estimation algorithms, the system will plan safe and efficient driving paths through the integration of the A* algorithm. Finally, the MPC model predictive algorithm will be employed for trajectory tracking control, enabling autonomous navigation and exploration in complex environments such as GNSS-denied areas. Simulation experiments indicate that our research demonstrates exceptional capabilities in real-time environmental perception and dynamic path planning.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Navigation System for Unmanned Vehicles Based on Monocular Depth Estimation


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Jia, Limin (Herausgeber:in) / Wang, Yanhui (Herausgeber:in) / Easa, Said (Herausgeber:in) / Gu, Xiang (Autor:in) / Chang, Mai (Autor:in) / Qu, Guixian (Autor:in) / Li, Chengwei (Autor:in) / Pang, Haobing (Autor:in) / Ren, Chenghao (Autor:in)

    Kongress:

    International Conference on SmartRail, Traffic and Transportation Engineering ; 2024 ; Chongqing, China October 25, 2024 - October 27, 2024



    Erscheinungsdatum :

    19.07.2025


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    MoNA Bench: A Benchmark for Monocular Depth Estimation in Navigation of Autonomous Unmanned Aircraft System

    Yongzhou Pan / Binhong Liu / Zhen Liu et al. | DOAJ | 2024

    Freier Zugriff

    A Framework for Autonomous UAV Navigation Based on Monocular Depth Estimation

    Jonas Gaigalas / Linas Perkauskas / Henrikas Gricius et al. | DOAJ | 2025

    Freier Zugriff

    Autonomous Navigation Algorithm of Monocular UAV Based on Depth Estimation and Robust VIO

    Zhen, XiangYu / Deng, ZhongLiang / Lou, BoYang et al. | IEEE | 2024



    Towards Continual Federated Learning of Monocular Depth for Autonomous Vehicles

    Soares, Elton F. de S. / Campos, Carlos Alberto V. | IEEE | 2024