High speed maglev wireless transmission environment has obvious characteristic, high-speed maglev train fast moving makes the high-speed maglev wireless channel show reveal the characteristics of rapid change, high-speed maglev train large capacity public wireless communication system is complex, low noise high electric locomotive’s own environment makes the research of high-speed maglev wireless channel challenges, especially the tendency of the wireless channel is difficult to analyze Autoregressive Integrated Moving Average Model (ARIMA) is one of the time sequence analysis models commonly used in data mining. Its goal is to predict future unknown number values through known time series. This paper mainly analyzes the time domain data of high-speed maglev wireless channel measured on site based on ARIMA time sequence analysis model. The mean absolute error and root mean square error are 4.4227 and 5.6112 respectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Time-domain Data Analysis of Maglev System EMI Based on ARIMA Model


    Beteiligte:
    Wu, Donghua (Autor:in) / Zhang, Jinbao (Autor:in)


    Erscheinungsdatum :

    10.12.2021


    Format / Umfang :

    433994 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Maglev track and maglev system

    ZHOU FAZHU / YANG JIE / GONG HONGJUN et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Suspension guide driving system, maglev train and maglev system

    CHEN YIN / DENG YUNCHUAN / WANG MINGFEI et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Short-time traffic flow prediction with ARIMA-GARCH model

    Chenyi Chen, / Jianming Hu, / Qiang Meng, et al. | IEEE | 2011


    Superconductive Maglev system on the Yamanashi Maglev test line

    Tsuruga,H. / Central Japan Railway,JP | Kraftfahrwesen | 1992