Powerline inspection requires extracting accurate measurements of the distances between powerlines and between vegetation and powerlines and electrical towers. Existing automatic powerline inspection methods using manned helicopters, Vertical Take-Off and Landing (VTOL) vehicles, or quadrotors obtain these distances offline, days after LiDAR data gathering, using complex algorithms that prevent their online computation. This paper presents an efficient online processing scheme for unsupervised segmentation for powerline inspection using LiDAR-only data. It receives each point cloud from the LiDAR and outputs clusters of points classified into categories Powerlines, Towers, Vegetation, and Soil. Unlike existing approaches, our method relies on a combination of reflectivity and geometry, which simplifies object segmentation and enables online onboard execution. The method was experimented in sets of powerline inspection flights in environments with different conditions and vegetation. The proposed method succeeded in providing suitable online object segmentation involving 56% lower computational cost than existing learning-based methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time LiDAR-based Semantic Classification for Powerline Inspection


    Beteiligte:
    Valseca, V. (Autor:in) / Paneque, J. (Autor:in) / Martinez-de Dios, J. R. (Autor:in) / Ollero, A. (Autor:in)


    Erscheinungsdatum :

    21.06.2022


    Format / Umfang :

    2607084 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Autonomous Reactive LiDAR-based Mapping for Powerline Inspection

    Paneque, J. / Valseca, V. / Martinez-de Dios, J. R. et al. | IEEE | 2022


    Indoor Autonomous Powerline Inspection Model

    Avila, Jovany / Brouwer, Tristan | IEEE | 2021


    Autonomous Drone-Based Powerline Insulator Inspection via Deep Learning

    Muhammad, Anas / Shahpurwala, Adnan / Mukhopadhyay, Shayok et al. | Springer Verlag | 2019


    Autonomous Drone-Based Powerline Insulator Inspection via Deep Learning

    Muhammad, Anas / Shahpurwala, Adnan / Mukhopadhyay, Shayok et al. | TIBKAT | 2020


    Drone system for powerline inspection using radio frequency scanning techniques

    WONG KHOI LOON | Europäisches Patentamt | 2025

    Freier Zugriff