Millimeter wave (mmWave) systems rely on accurate channel state information (CSI) for the design of the precoding and combining matrices. Acquiring accurate CSI, however, is challenging due to the large number of antennas, the low signal-to-noise (SNR) ratio before beamforming, and possible interference from neighboring base stations (BSs). Prior work on channel estimation focused on the first two challenges and did not address inter- cell interference. Interference from neighboring BSs deteriorates the already low SNR and introduces errors in the channel estimate. This leads to additional interference in the system. This paper studies the effects of inter- cell interference on compressed sensing (CS) mmWave channel estimation techniques. A CS measurement matrix design is then proposed to jointly estimate the mmWave channel and null interference from neighboring BSs. Simulation results show that channel estimate errors strongly depend on the interference power and the number of interfering BSs. Moreover, in the presence of interference, the proposed techniques are shown to achieve channel estimates comparable to interference-free systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Channel Estimation in Millimeter Wave Systems with Inter Cell Interference


    Beteiligte:


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    337435 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Millimeter-Wave Vehicular Channel Estimation

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | Springer Verlag | 2022



    Direction Aided Multipath Channel Estimation for Millimeter Wave Systems

    Koirala, Remun / Uguen, Bernard / Dardari, Davide et al. | IEEE | 2021



    Channel Estimation for Millimeter Wave Wideband Massive MIMO Systems via Tensor Decomposition

    Cheng, Long / Yue, Guangrong / Xiong, Xinyu et al. | IEEE | 2019