This chapter works on designing an efficient channel estimator for hybrid mmWave massive multiple-input multiple-output (mMIMO) systems. The proposed doubly-sparse approach relies on a judiciously designed training pattern to decouple the convoluted channel. By doing so, it becomes convenient to exploit the under-investigated channel sparsity in the delay domain together with the well-known beamspace sparsity. Furthermore, dedicated probing strategies are accordingly developed to ensure compatibility with the hybrid structure while utilizing double sparsity. Compared with existing alternatives, the proposed mmWave channel estimator works exceptionally in doubly-selective (frequency-time) channels and can hugely reduce the training overhead, storage demand, and computational complexity thanks to the exploitation of double (delay-beamspace) sparsity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Millimeter-Wave Vehicular Channel Estimation


    Weitere Titelangaben:

    Wireless Networks


    Beteiligte:
    Cheng, Xiang (Autor:in) / Gao, Shijian (Autor:in) / Yang, Liuqing (Autor:in)


    Erscheinungsdatum :

    03.05.2022


    Format / Umfang :

    23 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Millimeter-Wave Massive MIMO Vehicular Channel Modeling

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | Springer Verlag | 2022


    Millimeter-Wave Vehicular Communications

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | Springer Verlag | 2022


    Millimeter-Wave Index Modulation for Vehicular Downlink Transmission

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | Springer Verlag | 2022


    Poster: Connectivity analysis of millimeter wave vehicular networks

    Giordani, Marco / Rebato, Mattia / Zanella, Andrea et al. | IEEE | 2017


    Millimeter-Wave Index Modulation for Vehicular Uplink Access

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | Springer Verlag | 2022