Reliable trajectory planning like human drivers in real-world dynamic urban environments is a critical capability for autonomous driving. To this end, we develop a vision and imitation learning-based planner to generate collision-free trajectories several seconds into the future. Our network consists of three sub-networks to conduct three basic driving tasks: keep straight, turn left and turn right. During the planning process, high-level commands are received as prior information to select a specific sub-network. We create our dataset from the Robotcar dataset, and the experimental results suggest that our planner is able to reliably generate trajectories in various driving tasks, such as turning at different intersections, lane-keeping on curved roads and changing lanes for collision avoidance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-Based Trajectory Planning via Imitation Learning for Autonomous Vehicles


    Beteiligte:
    Cai, Peide (Autor:in) / Sun, Yuxiang (Autor:in) / Chen, Yuying (Autor:in) / Liu, Ming (Autor:in)


    Erscheinungsdatum :

    01.10.2019


    Format / Umfang :

    1567497 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Imitation Learning for Trajectory Planning

    WRAY KYLE HOLLINS / OSTAFEW CHRISTOPHER | Europäisches Patentamt | 2024

    Freier Zugriff

    Trajectory Planning for Autonomous Vehicles Using Hierarchical Reinforcement Learning

    Naveed, Kaleb Ben / Qiao, Zhiqian / Dolan, John M. | IEEE | 2021


    Vertical Trajectory Planning for Autonomous Vehicles

    Jurisch, Matthias / Koch, Thorsten | TIBKAT | 2021



    Vertical Trajectory Planning for Autonomous Vehicles

    Jurisch, Matthias / Koch, Thorsten | Springer Verlag | 2021