Statistical inefficiency often limits the effectiveness of particle filters for high-dimensional Bayesian tracking problems. To improve sampling efficiency on continuous domains, we propose the use of a particle filter with hybrid Monte Carlo (HMC), an MCMC (Markov chain Monte Carlo) method that follows posterior gradients toward. high probability states, while ensuring a properly weighted approximation to the posterior. We use HMC filtering to infer the 3D shape and motion of people from natural, monocular image sequences. The approach currently uses an empirical, edge-based likelihood function, and a second-order dynamic model with soft biomechanical joint constraints.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hybrid Monte Carlo filtering: edge-based people tracking


    Beteiligte:
    Poon, E. (Autor:in) / Fleet, D.J. (Autor:in)


    Erscheinungsdatum :

    01.01.2002


    Format / Umfang :

    1896262 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hybrid Monte Carlo Filtering: Edge-Based People Tracking

    Poon, E. / Fleet, D. J. | British Library Conference Proceedings | 2002


    People Tracking Using Hybrid Monte Carlo Filtering

    Choo, K. / Fleet, D. / IEEE | British Library Conference Proceedings | 2001


    People tracking using hybrid Monte Carlo filtering

    Kiam Choo, / Fleet, D.J. | IEEE | 2001