In vehicular crowdsensing (VCS) applications, vehicular participants should be carefully selected to meet the limited operation budget while providing sufficient quality of sensing. In this paper, we propose a matching based vehicular participant recruiting (MVP) strategy. The MVP strategy in-centivizes detouring vehicles to the target region, which allows the maximization of the sensing quality under the given VCS operation budget. The preliminary simulation results based on real traces demonstrate that MVP outperforms the existing vehicular crowdsensing strategy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Poster: A Vehicular Participant Recruiting Strategy for Improving Sensing Quality in Vehicular Crowdsensing


    Beteiligte:
    Kim, Joonwoo (Autor:in) / Lee, Jaewook (Autor:in) / Pack, Sangheon (Autor:in)


    Erscheinungsdatum :

    01.12.2019


    Format / Umfang :

    475268 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Improving Sensing Coverage in Vehicular Crowdsensing Using Location Diversity

    Chintakunta, Harish / Wang, Xin / Jaimes, Luis G | IEEE | 2022


    Environmental Monitoring via Vehicular Crowdsensing

    Morselli, Flavio / Zabini, Flavio / Conti, Andrea | IEEE | 2018


    Large Scale Active Vehicular Crowdsensing

    Zhu, Xiru / Samadh, Shabir Abdul / Yu, Tzu-Yang | IEEE | 2018


    Sensing Vehicle Selection Scheme Optimization in Vehicular Crowdsensing

    Yu, Haiyang / Liu, Chenyang / Yang, Yang et al. | ASCE | 2020


    Dynamic parking maps from vehicular crowdsensing

    Bock, Fabian / Gottfried Wilhelm Leibniz Universität Hannover | TIBKAT | 2018