Persistent target tracking in urban environments using UAV is a difficult task due to the limited field of view, visibility obstruction from obstacles and uncertain target motion. The vehicle needs to plan intelligently in 3D such that the target visibility is maximized. In this paper, we introduce Target Following DQN (TF-DQN), a deep reinforcement learning technique based on Deep Q-Networks with a curriculum training framework for the UAV to persistently track the target in the presence of obstacles and target motion uncertainty. The algorithm is evaluated through simulations. The results show that the UAV tracks the target persistently in diverse environments while avoiding obstacles on the trained environments as well as on unseen environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    UAV Target Tracking in Urban Environments Using Deep Reinforcement Learning


    Beteiligte:
    Bhagat, Sarthak (Autor:in) / Sujit, P.B. (Autor:in)


    Erscheinungsdatum :

    01.09.2020


    Format / Umfang :

    899498 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Target Tracking Control of UAV Through Deep Reinforcement Learning

    Ma, Bodi / Liu, Zhenbao / Zhao, Wen et al. | IEEE | 2023


    Multi-UAV Target-Finding in Simulated Indoor Environments using Deep Reinforcement Learning

    Walker, Ory / Vanegas, Fernando / Gonzalez, Felipe et al. | IEEE | 2020


    Navigation in Urban Environments amongst pedestrians using Multi-Objective Deep Reinforcement Learning

    Deshpande, Niranjan / Vaufreydaz, Dominique / Spalanzani, Anne | IEEE | 2021


    Deep-Reinforcement-Learning-Based Radar Parameter Adaptation for Multiple-Target Tracking

    Huang, Yongbing / Guo, Rui / Zhang, Yue et al. | IEEE | 2024


    Deep Reinforcement Learning Controller for Autonomous Tracking of Evasive Ground Target

    van Wijk, David / Eves, Kameron J. / Valasek, John | AIAA | 2023