The generic problem in anomaly detection is identifying unusual samples present in a large population. Each member of the population is described by a list of characteristics that define a feature vector. One statistical method that accounts for mutual correlations among the components has defined the standard for anomaly detection in communication, radar, and hyperspectral signal processing for several decades. This paper describes an advanced methodology that constructs nonlinear transformations to account for observed data distributions not amenable to a statistical description. The construction relies on a combination of stochastic methods and phenomenological constraints. Examples are taken from hyperspectral target detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Advanced Methods of Multivariate Anomaly Detection


    Beteiligte:
    Schaum, A. (Autor:in)


    Erscheinungsdatum :

    01.03.2007


    Format / Umfang :

    401697 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multivariate Hierarchical Anomaly Detection

    UCAR SEYHAN / MERCER RYAN | Europäisches Patentamt | 2022

    Freier Zugriff

    MIM-GAN-based Anomaly Detection for Multivariate Time Series Data

    Lu, Shan / Dong, Zhicheng / Cai, Donghong et al. | IEEE | 2023



    Advanced Anomaly Detection For Fuel Cell Health Monitoring

    Harihar, Darshan / Kallimani, Varun / Shet, Rohit et al. | IEEE | 2024


    Anomaly detection systems and methods

    PESE MERT DIETER / JOSHI PRACHI / TEPE KEMAL E | Europäisches Patentamt | 2023

    Freier Zugriff