Predicting road traffic in road networks is essential for alleviating congestion and enhancing traffic flow efficiency. This study presents a traffic volume prediction model trained using time-series data collected from loop detectors installed at three junctions in Istanbul, Turkey. The detectors record vehicle counts, providing the historical data used to train a residual LSTM model designed to forecast vehicle volumes 15 minutes into the future. The proposed model achieved an average mean absolute error of 0.26 across multiple loop detectors, demonstrating its effectiveness in accurately predicting short-term traffic volumes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Forecasting Road Traffic Volume Using Temporal-Only Time Series Models


    Beteiligte:


    Erscheinungsdatum :

    17.03.2025


    Format / Umfang :

    1044341 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Time-series Multivariate Multistep Traffic Flow Forecasting using Temporal Fusion Transformers

    Arnob, Saadman Sakif / Shuvro, Ali Abir / Rahman, Saadman et al. | Springer Verlag | 2025


    Time-series Multivariate Multistep Traffic Flow Forecasting using Temporal Fusion Transformers

    Arnob, Saadman Sakif / Shuvro, Ali Abir / Rahman, Saadman et al. | Springer Verlag | 2025


    MLP for Spatio-Temporal Traffic Volume Forecasting

    Dimara, Asimina / Triantafyllidis, Dimitrios / Krinidis, Stelios et al. | IEEE | 2021


    Short-term forecasting of bicycle traffic using structural time series models

    Doorley, Ronan / Pakrashi, Vikram / Caulfield, Brian et al. | IEEE | 2014


    Short term traffic forecasting using time series methods

    Moorthy, C. K. / Ratcliffe, B. G. | Taylor & Francis Verlag | 1988