This article proposes a fuzzy state noise-driven Kalman filter for sensor fusion to estimate the instantaneous position and attitude of an unmanned air vehicle for navigation purpose. The formulation of the state noise covariance matrix has been carried out using the fuzzy regression method applied to the state residuals. This algorithm has been embedded in the real-time hardware and tested for performance on ground and not in real flight. A comparative study between the proposed and conventional algorithm illustrates its efficacy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fuzzy state noise-driven Kalman filter for sensor fusion


    Beteiligte:
    Chauhan, S (Autor:in) / Patil, C (Autor:in) / Sinha, M (Autor:in) / Halder, A (Autor:in)


    Erscheinungsdatum :

    01.08.2009


    Format / Umfang :

    7 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Sensor Fusion of Camera and Lidar Using Kalman Filter

    Kunjumon, Reshma / Sangeetha Gopan, G. S. | Springer Verlag | 2021


    A Comparison of Extended Kalman Filter, Sigma-Point Kalman Filter, and Particle Filter in GPS/INS Sensor Fusion

    Gross, J. / Gu, Y. / Gururajan, S. et al. | British Library Conference Proceedings | 2010



    Ensemble Kalman and Particle Filter for Noise-Driven Oscillatory Systems

    Khalil, M. / Sarkar, A. / Adhikari, S. et al. | British Library Conference Proceedings | 2008