The road condition in the field environment is complex, and the accurate localization of unmanned vehicle is critical to solve the SLAM (Simultaneous Localization and Mapping) problem. In this paper, GPS, IMU and odometer sensors are selected as hardware equipment, and the strategy of combining global positioning and local positioning is formulated. The sensor data fusion is utilized with the more adaptive unscented Kalman filter algorithm as the core. The vehicle experiment is carried out in the real field environment to ensure that the localization system can precisely output the coordinates of unmanned vehicles under the condition of high nonlinearity as well as meet the robustness and accuracy requirements of unmanned vehicle localization in the field environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Three-dimensional positioning of unmanned vehicle in field based on unscented Kalman Filter


    Beteiligte:
    Li, Xiaolong (Autor:in) / Zhang, Chi (Autor:in) / Jin, Ma (Autor:in) / Xia, Kerui (Autor:in) / Cao, Xingyu (Autor:in) / Liu, Yiqun (Autor:in)

    Kongress:

    4th International Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2022) ; 2022 ; Guangzhou,China


    Erschienen in:

    Proc. SPIE ; 12257 ; 1225706


    Erscheinungsdatum :

    01.08.2022





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Three-dimensional positioning of unmanned vehicle in field based on unscented Kalman Filter

    Li, Xiaolong / Zhang, Chi / Jin, Ma et al. | British Library Conference Proceedings | 2022


    Unscented Kalman Filter

    Zarchan, Paul / Musoff, Howard | AIAA | 2015


    A Kinematic GNSS Positioning Method Based on Unscented Kalman Filter

    Li, Chunhua / Pan, Guofu / Cai, Chenglin et al. | British Library Conference Proceedings | 2017


    Unscented Kalman filter for vehicle state estimation

    Antonov, S. / Fehn, A. / Kugi, A. | Taylor & Francis Verlag | 2011


    Unscented Kalman filter for vehicle state estimation

    Antonov, S. | Online Contents | 2011