Due to the strong nonlinear characteristics of vehicle system, obtaining the current vehicle motion state accurately is the basis for improving vehicle control accuracy. Moreover, with the increase or decrease of passengers and goods, some parameters of the vehicle will change, and accurate values cannot be obtained at any time. In this paper, the Dual Unscenter Kalman filtering algorithm (DUKF) is compared with the Unscented Kalman filtering algorithm (UKF) by using the vehicle dynamics grey box model in Matlab. The results show that DUKF still has a certain estimation accuracy when estimating vehicle state and parameters.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on vehicle state estimation based on dual unscented Kalman filter


    Beteiligte:
    Batista, Paulo (Herausgeber:in) / Bilas Pachori, Ram (Herausgeber:in) / Fei, Mingzhe (Autor:in) / Wang, Jian (Autor:in) / Yang, Jun (Autor:in) / Du, Ruofei (Autor:in) / Wang, Yunjing (Autor:in) / Deng, Huan (Autor:in)

    Kongress:

    International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2023) ; 2023 ; Changsha, China


    Erschienen in:

    Proc. SPIE ; 12707


    Erscheinungsdatum :

    08.06.2023





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unscented Kalman filter for vehicle state estimation

    Antonov, S. / Fehn, A. / Kugi, A. | Taylor & Francis Verlag | 2011


    Unscented Kalman filter for vehicle state estimation

    Antonov,S. / Fehn,A. / Kugi,A. et al. | Kraftfahrwesen | 2011


    Unscented Kalman filter for vehicle state estimation

    Antonov, S. | Online Contents | 2011


    Vehicle State Information Estimation with the Unscented Kalman Filter

    Ren, Hongbin / Chen, Sizhong / Liu, Gang et al. | Tema Archiv | 2014


    Unscented Kalman filter for state and parameter estimation in vehicle dynamics

    Wielitzka, Mark / Dagen, Matthias / Ortmaier, Tobias | BASE | 2015

    Freier Zugriff