A smart transportation system aims to steer vehicles without encountering accidents on the way to the destination. Autonomous vehicles greatly rely on the camera to perceive their dynamically changing surroundings. Deep learning solutions to vision data are driving the research on collision mitigation systems for self-driving cars or automobiles with a higher level of autonomy. This paper presents a three-class vehicular collision image classification dataset created from crowd-sourced dashboard camera videos containing on-road vehicular collisions. An image classification deep learning model is developed using “Teachable Machine” by transfer learning on the proposed dataset that consists of 8729 images across three classes, namely “No Collision”, “Collision”, and “Collided”. The ability of the developed model to classify vehicular collision images based on the spatial aspect of the crash is evaluated and presented. The developed model produced a per-class accuracy of 73.13, 73.13, and 78.75% in classifying images and area under the receiver operating characteristics (ROC-AUC) curve of 0.74, 0.68, and 0.73 is obtained for images containing no collision, the occurrence of a collision, and after the occurrence of collision, respectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    On-Road Vehicular Collision Image Classification Using Deep Learning


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Bansal, Jagdish Chand (Herausgeber:in) / Borah, Samarjeet (Herausgeber:in) / Hussain, Shahid (Herausgeber:in) / Salhi, Said (Herausgeber:in) / Madhumitha, G. (Autor:in) / Senthilnathan, R. (Autor:in)

    Kongress:

    International Conference on Computing and Machine Learning ; 2024 ; Rangpo, India March 29, 2024 - March 30, 2024



    Erscheinungsdatum :

    23.10.2024


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vehicular Collision Avoidance at Intersection Using V2I Communications for Road Safety

    Pasha, Mohammad / Farooq, Mohd Umar / Yasmeen, Tahniyat et al. | TIBKAT | 2020


    Vehicular Collision Avoidance at Intersection Using V2I Communications for Road Safety

    Pasha, Mohammad / Farooq, Mohd Umar / Yasmeen, Tahniyat et al. | Springer Verlag | 2020


    VEHICULAR COLLISION SENSOR AND VEHICULAR COLLISION DETECTING DEVICE USING THE SAME

    WAKABAYASHI ASEI / TANABE TAKATOSHI / HASHIMOTO KAZUHISA | Europäisches Patentamt | 2017

    Freier Zugriff

    Modeling vehicle collision instincts over road midblock using deep learning

    Patil, Shubham / Raju, Narayana / Arkatkar, Shriniwas S. et al. | Taylor & Francis Verlag | 2023


    VEHICULAR COLLISION AVOIDANCE SYSTEM AND VEHICULAR COLLISION AVOIDANCE METHOD

    IKEDA SHINGO | Europäisches Patentamt | 2018

    Freier Zugriff