The robot realizes the perception of its own location through the fusion of multiple navigation sources. However, there are limits in application scenarios and cost for various navigation sources such as vision, laser, and inertial measurement unit. Therefore, a robust magnetic field loop closure detection for low-cost robot’s localization and mapping method is proposed in this paper. In front-end, The MEMS inertial measurement unit and wheel odometer are fused to estimate the pose state of the robot, andmagnetic field sequence loop closure is detected in DTW algorithm, and a general graph optimization method is applied to optimize the pose in back-end. Experiments show that this method can effectively detect the magnetic sequence loop closures and eliminate the cumulative error in inertial recurrence, realize the long-time continuous indoor positioning of the robot.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust Magnetic Field Loop Closure Detection for Low-Cost Robot’s Localization and Mapping


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yang, Changfeng (Herausgeber:in) / Xie, Jun (Herausgeber:in) / Yao, Bin (Autor:in) / Li, Wen (Autor:in) / Wei, Dongyan (Autor:in) / Ji, Xinchun (Autor:in) / Zhang, Wenchao (Autor:in)


    Erscheinungsdatum :

    05.05.2022


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Robot's charging station and robot's charging method

    Europäisches Patentamt | 2025

    Freier Zugriff

    Robot's charging station and robot's charging method

    CHOI DONG KYU / HONG EUL PYO | Europäisches Patentamt | 2023

    Freier Zugriff

    The Revisiting Problem in Simultaneous Localization and Mapping: A Survey on Visual Loop Closure Detection

    Tsintotas, Konstantinos A. / Bampis, Loukas / Gasteratos, Antonios | IEEE | 2022


    Feature-Based Loop Closure Detection and Optimization for LiDAR Mapping

    Qin, Bingjia / Yu, Chunlei / Yang, Diange et al. | SAE Technical Papers | 2020