Research on the impact of built environment on Origin Destination (OD) passenger flow is essential for combining urban land planning and public transportation planning. However, the sparsity of inter-station OD makes the relationship between built environment and OD passenger flow not significant enough. To address this issue, this study proposes a clustering model based on passenger flow destination and station location. Firstly, the clustering is initialized based on the station location and station type. Then, a modular index of the road network clustering is established to optimize the clustering by considering the passenger flow destination, determine the optimal clustering, and classify it afterwards. Furthermore, considering the combination of different types of clusters, the GBRT model is used to study the relationship between different types of inter-cluster OD passenger flow and built environment. A case study in Beijing shows that the noise of the nonlinear effect of built environment on inter-cluster OD is smaller than that of the noise of the nonlinear effect of built environment on inter-station OD. This is because the aggregation of stations into clusters makes the regularity more significant, achieving better fitting results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Examining the Relationship Between Built Environment and Urban Rail Transit Inter-Cluster OD Passenger Flow


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Qin, Yong (Herausgeber:in) / Jia, Limin (Herausgeber:in) / Yang, Jianwei (Herausgeber:in) / Diao, Lijun (Herausgeber:in) / Yao, Dechen (Herausgeber:in) / An, Min (Herausgeber:in) / Chen, Lidan (Autor:in) / Xu, Xinyue (Autor:in)

    Kongress:

    International Conference on Electrical and Information Technologies for Rail Transportation ; 2023 ; Beijing, China October 19, 2023 - October 21, 2023



    Erscheinungsdatum :

    03.02.2024


    Format / Umfang :

    8 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Urban Rail Transit Passenger Flow Forecasting - XGBoost

    Sun, Xiaoli / Zhu, Caihua / Ma, Chaoqun | TIBKAT | 2022


    Urban Rail Transit Passenger Flow Forecasting—XGBoost

    Sun, Xiaoli / Zhu, Caihua / Ma, Chaoqun | ASCE | 2022




    Urban rail transit passenger flow prediction method under emergency

    ZHANG WENQIANG / LIU YURAN / ZHANG HANXIAO et al. | Europäisches Patentamt | 2023

    Freier Zugriff