This chapter works on developing a novel three-dimensional (3D) non-stationary irregular-shaped geometry-based stochastic model (IS-GBSM) for beyond 5G and 6G vehicle-to-vehicle (V2V) mmWave massive multiple-input multiple-output (MIMO) channels. The proposed IS-GBSM utilizes distinguishable dynamic clusters and static clusters to explore the impact of vehicular traffic density (VTD) on channel statistics. Specifically, the developed method generates dynamic/static correlated clusters by an improved K-Means clustering algorithm. Then, by employing a birth-death process based on correlated groups, the consistency in birth and death between dynamic/static correlated clusters during time-array evolution is modeled. Finally, extensive simulations are carried out and demonstrate that space-time-frequency non-stationarity has been accurately captured, and the influence of VTDs on channel statistics has been successfully explored.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Millimeter-Wave Massive MIMO Vehicular Channel Modeling


    Weitere Titelangaben:

    Wireless Networks


    Beteiligte:
    Cheng, Xiang (Autor:in) / Gao, Shijian (Autor:in) / Yang, Liuqing (Autor:in)


    Erscheinungsdatum :

    03.05.2022


    Format / Umfang :

    32 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Millimeter-Wave Vehicular Channel Estimation

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | Springer Verlag | 2022


    Sphere Decoding for Millimeter Wave Massive MIMO

    Alouzi, Mohamed / Chan, Francois / D'Amours, Claude | IEEE | 2019


    Channel Estimation for Millimeter Wave Wideband Massive MIMO Systems via Tensor Decomposition

    Cheng, Long / Yue, Guangrong / Xiong, Xinyu et al. | IEEE | 2019



    Hybrid Beamforming for Broadband Millimeter Wave Massive MIMO Systems

    Chen, Rui / Xu, Hui / Li, Changle et al. | IEEE | 2018