In human-robot collaboration, unintentional physical contacts occur in the form of collisions and clamping, which must be detected and classified separately for a reaction. If certain collision or clamping situations are misclassified, reactions might occur that make the true contact case more dangerous. This work analyzes data-driven modeling based on physically modeled features like estimated external forces for clamping and collision classification with a real parallel robot. The prediction reliability of a feedforward neural network is investigated. Quantification of the classification uncertainty enables the distinction between safe versus unreliable classifications and optimal reactions like a retraction movement for collisions, structure opening for the clamping joint, and a fallback reaction in the form of a zero-g mode. This hypothesis is tested with experimental data of clamping and collision cases by analyzing dangerous misclassifications and then reducing them by the proposed uncertainty quantification. Finally, it is investigated how the approach of this work influences correctly classified clamping and collision scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Quantifying Uncertainties of Contact Classifications in a Human-Robot Collaboration with Parallel Robots


    Weitere Titelangaben:

    Springer Proceedings in Advanced Robotics


    Beteiligte:
    Piazza, Cristina (Herausgeber:in) / Capsi-Morales, Patricia (Herausgeber:in) / Figueredo, Luis (Herausgeber:in) / Keppler, Manuel (Herausgeber:in) / Schütze, Hinrich (Herausgeber:in) / Mohammad, Aran (Autor:in) / Muscheid, Hendrik (Autor:in) / Schappler, Moritz (Autor:in) / Seel, Thomas (Autor:in)

    Kongress:

    International Workshop on Human-Friendly Robotics ; 2023 ; Munich, Germany September 20, 2023 - September 21, 2023



    Erscheinungsdatum :

    10.03.2024


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Further Studies Quantifying Human Thermal Modeling Uncertainties

    Iyoho, A. / Thornton, S. / Nair, S. et al. | British Library Conference Proceedings | 2001


    Further Studies Quantifying Human Thermal Modeling Uncertainties

    Iyoho, Anthony / Thornton, Samuel / Nair, Satish | SAE Technical Papers | 2001



    HUMAN-ROBOT COLLABORATION

    FELIP LEON JAVIER / AHUJA NILESH / CAMPOS MACIAS LEOBARDO et al. | Europäisches Patentamt | 2021

    Freier Zugriff