Safety assurance for automated driving is one of the major challenges in automotive research. Scenario-based testing has become a promising approach to tackle this issue to assess the risk of these functions. In this approach, the automated driving function is confronted with clearly defined scenarios instead of driving in real-world traffic. Despite its potential of significantly reducing the required testing effort compared to driving in the real-world, this approach comes with three major challenges: The proper definition of scenarios covering real-world traffic sufficiently and serving the safety assurance process, the management of those scenarios and underlying data, and the acquisition of traffic data to link scenarios to the real world.

    In the following, a holistic approach tackling those challenges is presented with references to other state of the art methods. For this, a methodology to abstract reality through scenarios is presented. Those are managed with a scenario database and the link to reality is established utilizing real-world data. Furthermore, a methodology is shown how to generate scenarios for simulations utilizing the scenario concept. Next to the methodology, practical solutions are shown with a scenario concept, the database scenario.center, and real-world data acquisition utilizing drones.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Scenarios and Scenario Databases for AV Safety Assurance


    Weitere Titelangaben:

    Lect.Notes Mobility


    Beteiligte:
    Meyer, Gereon (Herausgeber:in) / Beiker, Sven (Herausgeber:in) / Glasmacher, Christoph (Autor:in) / Schuldes, Michael (Autor:in) / Klas, Christoph (Autor:in) / Zlocki, Adrian (Autor:in) / Eckstein, Lutz (Autor:in)

    Kongress:

    Automated Road Transportation Symposium ; 2023 ; San Francisco, CA, USA July 09, 2023 - July 13, 2023


    Erschienen in:

    Road Vehicle Automation 11 ; Kapitel : 12 ; 126-148


    Erscheinungsdatum :

    23.08.2024


    Format / Umfang :

    23 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Scenario Factory: Creating Safety-Critical Traffic Scenarios for Automated Vehicles

    Klischat, Moritz / Liu, Edmond Irani / Holtke, Fabian et al. | IEEE | 2020


    Scenario-Based Methods for Machine Learning Assurance

    Hirschle, Manuel / Kirov, Dmitrii / Aievola, Rosario et al. | IEEE | 2023


    A framework for definition of logical scenarios for safety assurance of automated driving

    Weber, Hendrik / Bock, Julian / Klimke, Jens et al. | BASE | 2019

    Freier Zugriff

    Databases and scenarios for European transport

    Delavelle, Christian / Michon, Aline / Roger, Pascal | TIBKAT | 1996