Abstract In probabilistic mobile robot localization, the development of the sensor model plays a crucial role as it directly influences the efficiency and the robustness of the localization process. Sensor models developed for particle filters compute the likelihood of a sensor measurement by assuming that one of the particles accurately represents the true location of the robot. In practice, however, this assumption is often strongly violated, especially when using small sample sets or during global localization. In this paper we introduce a novel, adaptive sensor model that explicitly takes the limited representational power of particle filters into account. As a result, our approach uses smooth likelihood functions during global localization and more peaked functions during position tracking. Experiments show that our technique significantly outperforms existing, static sensor models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust Monte-Carlo Localization Using Adaptive Likelihood Models


    Beteiligte:
    Pfaff, Patrick (Autor:in) / Burgard, Wolfram (Autor:in) / Fox, Dieter (Autor:in)


    Erscheinungsdatum :

    01.01.2006


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Maximum Likelihood Time Delay Estimation Algorithm Using Monte Carlo Method

    Ba, Bin / Zheng, Na'e / Zhu, Shilei et al. | British Library Online Contents | 2015


    Dynamic Maps in Monte Carlo Localization

    Milstein, A. / Canadian Society for Computational Studies of Intelligence | British Library Conference Proceedings | 2005


    Localization of Indoor Mobile Robot Using Monte Carlo Localization Algorithm (MCL)

    Mahmood, Ali Khaleel / Bicker, Robert | BASE | 2016

    Freier Zugriff


    Robust Monte Carlo Localisation Using a Ground Penetrating Radar

    Stasewitsch, Ilja / Schattenberg, Jan / Frerichs, Ludger | Springer Verlag | 2022